Amiodarone analog-dependent effects on CYP2C9-mediated metabolism and kinetic profiles.
نویسندگان
چکیده
CYP2C9 substrates can exhibit both hyperbolic and atypical kinetic profiles, and their metabolism can be activated or inhibited depending on the effector studied. CYP2C9 genetic variants can also affect both substrate turnover and kinetic profile. The present study assessed whether analogs of the effector amiodarone differentially altered the atypical kinetic profile of the substrate naproxen and whether this effect was genotype-dependent. Amiodarone, desethylamiodarone, benzbromarone, and its dimethyl analog (benz(meth)arone) were incubated with naproxen and either CYP2C9.1 or CYP2C9.3. Amiodarone activated naproxen demethylation at lower concentrations, regardless of the CYP2C9 allele, and inhibited metabolism at higher concentrations without altering the kinetic profile. Desethylamiodarone was a potent inhibitor of naproxen demethylation, irrespective of the CYP2C9 allele. Benzbromarone altered naproxen demethylation kinetics from a biphasic profile to that of a hyperbolic form in CYP2C9.1 and CYP2C9.3, resulting in inhibition and activation, respectively. In contrast, benz(meth)arone activated naproxen demethylation in both CYP2C9.1 and CYP2C9.3. In addition, the kinetic profile of naproxen demethylation became more hyperbolic at lower concentrations of benz(meth)arone and then reverted back to biphasic as the benz(meth)arone was increased further. Equilibrium binding and multiple-ligand docking studies were used to propose how such similar compounds exerted very different effects on naproxen metabolism. In summary, effectors of CYP2C9 metabolism can alter not only the degree of substrate turnover (activation or inhibition) but also the kinetic profile of metabolism of CYP2C9 substrates through effects on substrate binding and orientation. In addition, these kinetics effects are concentration- and genotype-dependent.
منابع مشابه
Polymorphic variants (CYP2C9*3 and CYP2C9*5) and the F114L active site mutation of CYP2C9: effect on atypical kinetic metabolism profiles.
CYP2C9 wild-type protein has been shown to exhibit atypical kinetic profiles of metabolism that may affect in vitro-in vivo predictions made during the drug development process. Previous work suggests a substrate-dependent effect of polymorphic variants of CYP2C9 on the rate of metabolism; however, it is hypothesized that these active site amino acid changes will affect the kinetic profile of a...
متن کاملGeneration and evaluation of a CYP2C9 heteroactivation pharmacophore.
Positive cooperativity (auto- and heteroactivation) of drug oxidation, a potential cause of drug interactions, is well established in vitro for cytochrome P450 (P450) 3A4 but to a much lesser extent for other drug-metabolizing P450 isoforms. Using a high throughput fluorescent-based CYP2C9 effector assay, we identified >30 heteroactivators from a set of 1504 structurally diverse compounds. Seve...
متن کاملFlavonoids diosmetin and hesperetin are potent inhibitors of cytochrome P450 2C9-mediated drug metabolism in vitro.
The aim of this study was to examine in vitro, by means of kinetic analysis and molecular docking simulations, the effects of the flavone diosmetin and its flavanone analog hesperetin on CYP (cytochrome P450) 2C9-mediated drug metabolism. To this purpose, the conversion of diclofenac to 4'-hydroxydiclofenac by human liver microsomes was used as a model assay for assessing the CYP2C9 inhibitory ...
متن کاملDapsone activation of CYP2C9-mediated metabolism: evidence for activation of multiple substrates and a two-site model.
Dapsone activates CYP2C9-mediated metabolism in various expression systems and is itself metabolized by CYP2C9 to its hydroxylamine metabolite. Studies were conducted with expressed CYP2C9 to characterize the kinetic effects of dapsone (0-100 microM) on (S)-flurbiprofen (2-300 microM), (S)-naproxen (10-1800 microM), and piroxicam (5-900 microM) metabolism in 6 x 6 matrix design experiments. The...
متن کاملActivation of CYP2C9-mediated metabolism by a series of dapsone analogs: kinetics and structural requirements.
Cytochrome P450 2C9-mediated metabolism has been shown to be activated in the presence of the effector dapsone. However, it has yet to be established what effector structural features are necessary to activate CYP2C9 activity. To address this question, kinetic studies were conducted with nine analogs of dapsone containing various functional properties (three sulfone compounds, three carbonyl co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Drug metabolism and disposition: the biological fate of chemicals
دوره 34 10 شماره
صفحات -
تاریخ انتشار 2006